Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 734
1.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Article En | MEDLINE | ID: mdl-38726730

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Bupleurum , Metabolomics , Oleanolic Acid , Plant Roots , Saponins , Sorghum , Zea mays , Sorghum/metabolism , Sorghum/chemistry , Bupleurum/chemistry , Bupleurum/metabolism , Zea mays/metabolism , Zea mays/chemistry , Saponins/analysis , Saponins/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Plant Roots/metabolism , Plant Roots/chemistry , Mass Spectrometry/methods , Agriculture/methods , Liquid Chromatography-Mass Spectrometry
2.
PeerJ ; 12: e17274, 2024.
Article En | MEDLINE | ID: mdl-38737742

Background: This experiment was conducted in the Research and Application Field of Canakkale Onsekiz Mart University, Faculty of Agriculture, during the 2020 and 2021 summer period. The objective of this experiment was to determine the effects of different harvesting heights on forage yields and crude ash, fat, protein, and carbon and nitrogen content of leaves and stalks of sweet sorghum (SS) and sorghum sudangrass hybrid (SSH) cultivars. Methods: Nutri Honey and Nutrima varieties of SSH and the M81-E and Topper-76 varieties of SS were used in this study. The experiment was conducted using the randomized complete block design with four replications. The main plots each included two early and late varieties of SS and SSH cultivars, while the subplots were used to test different harvesting heights (30, 60, 90, 120, 150 cm) and physiological parameters of each crop. Results: The results of this study showed that dry forage yields increased with plant growth, with the amount of forage produced at the end of the growth cycle increasing 172.2% compared to the early growth stages. Carbon (C) content of leaves decreased by 6.5%, nitrogen (N) by 46%, crude protein (CP) by 54%, crude fat (CF) by 34%, while crude ash (CA) content increased by 6% due to the increase in plant height harvest. At the same time, in parallel with the increase in plant height at harvest, the nitrogen content of the stems of the plants decreased by 87%, crude protein by 65%, crude ash by 33% and crude fat by 41%, while the carbon content increased by 4%. As plant height at harvest increased, hay yield increased but nutrient contents of the hay decreased. However, the Nutrima, Nutri Honey and M81-E sorghum cultivars, harvested three times at heights of 90 to 120 cm, are recommended for the highest yield.


Sorghum , Sorghum/growth & development , Sorghum/metabolism , Sorghum/chemistry , Nitrogen/metabolism , Nitrogen/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Carbon/metabolism , Carbon/analysis , Animal Feed/analysis
3.
Waste Manag ; 181: 211-219, 2024 May 30.
Article En | MEDLINE | ID: mdl-38648723

Complex organic matter represents a suitable substrate to produce hydrogen through dark fermentation (DF) process. To increase H2 yields, pretreatment technology is often required. The main objective of the present work was to investigate thermo-acid pretreatment impact on sugar solubilization and biotic parameters of DF of sorghum or organic fraction of municipal solid waste (OFMSW). Biochemical hydrogen potential tests were carried out without inoculum using raw or thermo-acid pretreated substrates. Results showed an improvement in sugar solubilization after thermo-acid pretreatments. Pretreatments led to similar DF performances (H2 and total metabolite production) compared to raw biomasses. Nevertheless, they were responsible for bacterial shifts from Enterobacteriales towards Clostridiales and Bacillales as well as metabolic changes from acetate towards butyrate or ethanol. The metabolic changes were attributed to the biomass pretreatment impact on indigenous bacteria as no change in the metabolic profile was observed after performing thermo-acid pretreatments on irradiated OFMSW (inactivated indigenous bacteria and inoculum addition). Consequently, acid pretreatments were inefficient to improve DF performances but led to metabolic and bacterial community changes due to their impact on indigenous bacteria.


Biomass , Fermentation , Bacteria/metabolism , Solid Waste/analysis , Hydrogen/metabolism , Sorghum/metabolism , Refuse Disposal/methods
4.
Nat Commun ; 15(1): 3488, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664394

Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.


Arabidopsis , Deep Learning , Gene Expression Regulation, Plant , Solanum lycopersicum , Sorghum , Zea mays , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Sorghum/genetics , Sorghum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Zea mays/genetics , Regulatory Sequences, Nucleic Acid/genetics , Genome, Plant , Genetic Variation , Species Specificity
5.
Sci Rep ; 14(1): 9499, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664438

Sorghum is a vital food and feed crop in the world's dry regions. Developing sorghum cultivars with high biomass production and carbon sequestration can contribute to soil health and crop productivity. The objective of this study was to assess agronomic performance, biomass production and carbon accumulation in selected sorghum genotypes for production and breeding. Fifty sorghum genotypes were evaluated at three locations (Silverton, Ukulinga, and Bethlehem) in South Africa during 2022 and 2023 growing seasons. Significant genotype × location (p < 0.05) interactions were detected for days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), and grain yield (GY). The highest GY was recorded for genotypes AS115 (25.08 g plant-1), AS251 (21.83 g plant-1), and AS134 (21.42 g plant-1). Genotypes AS122 and AS27 ranked first and second, respectively, for all the carbon stock parameters except for root carbon stock (RCs), whereas genotype AS108 had the highest RCs of 8.87 g plant-1. The principal component analysis identified GY, DTH, PH, PB, SB, RB, RCs, RCs/SCs, total plant carbon stock (PCs), shoot carbon stock (SCs), and grain carbon stock (GCs) as the most discriminated traits among the test genotypes. The cluster analysis using agronomic and carbon-related parameters delineated the test genotypes into three genetic groups, indicating marked genetic diversity for cultivar development and enhanced C storage and sustainable sorghum production. The selected sorghum genotypes are recommended for further breeding and variety release adapted to various agroecologies in South Africa.


Biomass , Carbon , Genotype , Plant Roots , Plant Shoots , Sorghum , Sorghum/genetics , Sorghum/growth & development , Sorghum/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Carbon/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics , Plant Shoots/metabolism , South Africa , Plant Breeding , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism
6.
Bioresour Technol ; 400: 130648, 2024 May.
Article En | MEDLINE | ID: mdl-38561153

Open unsterile fermentation of the low-cost non-food crop, sweet sorghum, is an economically feasible lactic acid biosynthesis process. However, hyperosmotic stress inhibits microbial metabolism and lactic acid biosynthesis, and engineering strains with high osmotic tolerance is challenging. Herein, heavy ion mutagenesis combined with osmotic pressure enrichment was used to engineer a hyperosmotic-tolerant Bacillus coagulans for L-lactic acid production. The engineered strain had higher osmotic pressure tolerance, when compared with the parental strain, primarily owing to its improved properties such as cell viability, cellular antioxidant capacity, and NADH supply. In a pilot-scale open unsterile fermentation using sweet sorghum juice as a feedstock, the engineered strain produced 94 g/L L-lactic acid with a yield of 91 % and productivity of 6.7 g/L/h, and optical purity of L-lactic acid at the end of fermentation was 99.8 %. In short, this study provided effective and low-cost approach to produce polymer-grade L-lactic acid.


Bacillus coagulans , Fermentation , Lactic Acid , Osmotic Pressure , Sorghum , Lactic Acid/biosynthesis , Lactic Acid/metabolism , Sorghum/metabolism
7.
J Environ Manage ; 358: 120781, 2024 May.
Article En | MEDLINE | ID: mdl-38608570

Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.


Bioreactors , Fermentation , Fruit and Vegetable Juices , Hypocreales , Sorghum , Sorghum/metabolism , Fruit and Vegetable Juices/analysis , Cellulase/metabolism , Malus
8.
New Phytol ; 242(2): 786-796, 2024 Apr.
Article En | MEDLINE | ID: mdl-38451101

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Sorghum , Sorghum/metabolism , Plant Proteins/metabolism , Flowers/physiology , Florigen/metabolism , Photoperiod , Gene Expression Regulation, Plant
9.
Planta ; 259(4): 89, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467941

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Millets , Sorghum , Humans , Taiwan , Microscopy, Electron, Scanning , Sorghum/metabolism , Waxes/metabolism , Plant Leaves/metabolism , Plant Epidermis/metabolism
10.
Planta ; 259(5): 100, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38536457

MAIN CONCLUSION: SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.


Arabidopsis , Soil Pollutants , Sorghum , Humans , Cadmium/toxicity , Cadmium/metabolism , Sorghum/genetics , Sorghum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Biodegradation, Environmental , Edible Grain/metabolism , Plant Roots/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism
11.
Chemosphere ; 354: 141722, 2024 Apr.
Article En | MEDLINE | ID: mdl-38494004

Nickel (Ni) is an essential element, but it can be phytotoxic in high concentration, which may be caused by high availability in soil solution. The objective of this study was to evaluate the effect of sources and doses of Ni applied to a dystrophic Red Latosol cultivated with sorghum on i) the availability of the metal in the soil; ii) the impact on biological and biochemical properties of the soil; iii) the absorption and distribution in sorghum plants; and iv) crop productivity. The experiment was carried out within a completely randomized design with two nickel sources [nickel(II) nitrate, Ni(NO3)2 and nickel(III) oxide, Ni2O3], three doses (35, 70, and 140 mg Ni kg-1 soil), plus controls without Ni, with 3 replications. The concentrations of Ni in the soil, soil microbial biomass (SMB), basal soil respiration (BSR), metabolic quotient (qCO2), fluorescein diacetate (FDA) hydrolysis, and urease activity were determined. The concentrations of Ni in the leaf diagnostic and in the plant (shoot, root, and grains) were also measured. In the soil, the concentrations of available Ni remained between 0.21 and 54.01 mg Ni kg-1. Ni2O3 contributed very little to the increase in available Ni. SMB and the FDA hydrolysis were not affected by the Ni source or Ni dose, but BSR and qCO2 had significant increase with Ni application rates, suggesting the soil microorganisms faced stress. Soil urease activity was affected by Ni dose but not by Ni source. The dose of Ni as Ni(NO3)2 decreased the metal concentration in the plant, while that of Ni2O3 increased it. Nickel source did not affect dry mass production of the plants, but grain yield was affected in a dose-dependent manner when Ni2O3 was the source of Ni.


Soil Pollutants , Sorghum , Soil Pollutants/analysis , Nickel/chemistry , Sorghum/metabolism , Soil/chemistry , Urease/metabolism , Plants/metabolism
12.
Cell Rep ; 43(4): 113971, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38537644

Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.


Microbiota , Plant Roots , Soil Microbiology , Sorghum , Striga , Sorghum/microbiology , Sorghum/metabolism , Striga/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/parasitology , Metabolome , Plant Diseases/microbiology , Plant Diseases/parasitology
13.
Int J Biol Macromol ; 262(Pt 1): 129867, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309400

The purpose of this study was to fabricate composite nanoparticles using soy protein isolate (SPI) and sorghum bran arabinoxylan (AX) for the delivery of curcumin (Cur). The influences of AX concentrations on the physicochemical characteristic, stability and bioaccessibility of curcumin were investigated. The findings showed that the encapsulation efficiency of curcumin obviously increased upon incorporating AX in comparison to SPI-Cur particles. Hydrogen bonds and hydrophobic interactions were the primary driving forces for the formation of SPI-Cur-AX nanoparticles (SCA). SCA nanoparticles with 1.00 % AX exhibited a uniform size with orderly distribution, suggesting its remarkable physical stability due to the strengthened electrostatic repulsion. However, excessive AX led to aggregation of particles, a noticeable increase in size, and subsequently, a reduction in stability. Due to the heightened free radical scavenging capacity of sorghum AX, SCA nanoparticles exhibited superior antioxidant capabilities. Compared to free curcumin, encapsulation within composite particles significantly enhanced the retention rate and bioaccessibility of curcumin. This improvement was attributed to the potent emulsification ability of AX, which coordinated with bile salt to promote the transfer of curcumin into micelles. The research provides an effective strategy for developing food-grade delivery carriers aimed at enhancing dispersibility, stability and bioaccessibility of the fat-soluble bioactives.


Curcumin , Nanoparticles , Sorghum , Xylans , Curcumin/chemistry , Soybean Proteins/chemistry , Sorghum/metabolism , Polysaccharides/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
14.
J Environ Manage ; 354: 120327, 2024 Mar.
Article En | MEDLINE | ID: mdl-38359627

Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.


Cellulase , Saccharomycetales , Sorghum , Hydrolysis , Sorghum/chemistry , Sorghum/metabolism , Silage/analysis , Silage/microbiology , Cellulase/metabolism , Fermentation
15.
Food Chem ; 443: 138502, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38306909

The present investigation explored the antifungal effectiveness of Trachyspermum ammi essential oil (TAEO) against Aspergillus flavus, aflatoxin B1 (AFB1) contamination, and its mechanism of action using biochemical and computational approaches. The GC-MS result revealed the chemical diversity of TAEO with the highest percentage of γ-terpinene (39 %). The TAEO exhibited minimum inhibitory concentration against A. flavus growth (0.5 µL/mL) and AFB1 (0.4 µL/mL) with radical scavenging activity (IC50 = 2.13 µL/mL). The mechanism of action of TAEO was associated with the alteration in plasma membrane functioning, antioxidative defense, and carbon source catabolism. The molecular dynamic result shows the multi-regime binding of γ-terpinene with the target proteins (Nor1, Omt1, and Vbs) of AFB1 biosynthesis. Furthermore, TAEO exhibited remarkable in-situ protection of Sorghum bicolor seed samples against A. flavus and AFB1 contamination and protected the nutritional deterioration. Hence, the study recommends TAEO as a natural antifungal agent for food protection against A. flavus mediated biodeterioration.


Ammi , Apiaceae , Cyclohexane Monoterpenes , Oils, Volatile , Sorghum , Aspergillus flavus/metabolism , Oils, Volatile/chemistry , Aflatoxin B1/metabolism , Sorghum/metabolism , Ammi/metabolism , Antifungal Agents/chemistry , Apiaceae/metabolism
16.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 3): 59-66, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38376821

Sorghum, a short-day tropical plant, has been adapted for temperate grain production, in particular through the selection of variants at the MATURITY loci (Ma1-Ma6) that reduce photoperiod sensitivity. Ma3 encodes phytochrome B (phyB), a red/far-red photochromic biliprotein photoreceptor. The multi-domain gene product, comprising 1178 amino acids, autocatalytically binds the phytochromobilin chromophore to form the photoactive holophytochrome (Sb.phyB). This study describes the development of an efficient heterologous overproduction system which allows the production of large quantities of various holoprotein constructs, along with purification and crystallization procedures. Crystals of the Pr (red-light-absorbing) forms of NPGP, PGP and PG (residues 1-655, 114-655 and 114-458, respectively), each C-terminally tagged with His6, were successfully produced. While NPGP crystals did not diffract, those of PGP and PG diffracted to 6 and 2.1 Šresolution, respectively. Moving the tag to the N-terminus and replacing phytochromobilin with phycocyanobilin as the ligand produced PG crystals that diffracted to 1.8 Šresolution. These results demonstrate that the diffraction quality of challenging protein crystals can be improved by removing flexible regions, shifting fusion tags and altering small-molecule ligands.


Phytochrome , Sorghum , Phytochrome B/genetics , Sorghum/genetics , Sorghum/metabolism , Crystallization , Crystallography, X-Ray , Phytochrome/chemistry , Phytochrome/genetics , Phytochrome/metabolism , Light
17.
BMC Genom Data ; 25(1): 14, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38321382

OBJECTIVE: Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain produced in the world. Interest for cultivating sorghum is increasing all over the world in the context of climate change, due to its low input and water requirements. Like other cultivated cereals, sorghum has significant nutritional value thanks to its protein, carbohydrate and dietary fiber content, these latter mainly consisting of cell wall polysaccharides. This work describes for the first time a transcriptomic analysis dedicated to identify the genes involved in the biosynthesis and remodelling of cell walls both in the endosperm and outer layers of sorghum grain during its development. Further analysis of these transcriptomic data will improve our understanding of cell wall assembly, which is a key component of grain quality. DATA DESCRIPTION: This research delineates the steps of our analysis, starting with the cultivation conditions and the grain harvest at different stages of development, followed by the laser microdissection applied to separate the endosperm from the outer layers. It also describes the procedures implemented to generate RNA libraries and to obtain a normalized and filtered table of transcript counts, and finally determine the number of putative cell wall-related genes already listed in literature.


Edible Grain , Sorghum , Edible Grain/genetics , Edible Grain/metabolism , Sorghum/genetics , Sorghum/metabolism , Endosperm/metabolism , Gene Expression Profiling , Cell Wall/metabolism
18.
Chemosphere ; 346: 140571, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303388

This study investigates the mechanism behind the oxidation di-(2-ethylhexyl) phthalate (DEHP) in marine sediment by coupling sulfite using biochar prepared from sorghum distillery residue (SDRBC). The rationale for this investigation stems from the need to seek effective methods for DEHP-laden marine sediment remediation. The aim is to assess the feasibility of sulfite-based advanced oxidation processes for treating hazardous materials such as DEHP containing sediment. To this end, the sediment in question was treated with 2.5 × 10-5 M of sulfite and 1.7 g L-1 of SDRBC700 at acidic pH. Additionally, the study demonstrated that the combination of SDRBC/sulfite with a bacterial system enhances DEHP removal. Thermostilla bacteria were enriched, highlighting their role in sediment treatment. This study concludes that sulfite-associated sulfate radicals-driven carbon advanced oxidation process (SR-CAOP) offers sustainable sediment pretreatment through the SDRBC/sulfite-mediated microbial consortium, in which the SO3•- and 1O2 were responsible for DEHP degradation. SDRBC/sulfite offers an effective and environmentally friendly method for removing DEHP. Further, these results can be targeted at addressing industry problems related to sediment treatment.


Charcoal , Diethylhexyl Phthalate , Microbiota , Phthalic Acids , Sorghum , Diethylhexyl Phthalate/metabolism , Sorghum/metabolism , Phthalic Acids/chemistry , Geologic Sediments
19.
Huan Jing Ke Xue ; 45(1): 480-488, 2024 Jan 08.
Article Zh | MEDLINE | ID: mdl-38216497

Microplastics can become potential transport carriers of other environmental pollutants (such as heavy metals), so the combined pollution of microplastics and heavy metals has attracted increasing attention from researchers. To explore the mechanism of plant growth-promoting bacteria VY-1 alleviating the combined pollution stress of heavy metals and microplastics in sorghum, the effects of inoculation on biomass and accumulation of heavy metals in sorghum were analyzed using a hydroponics experiment, and the effects of inoculation on gene expression in sorghum were analyzed via transcriptomics. The results showed that the combined pollution of polyethylene (PE) and cadmium (Cd) decreased the dry weight of above-ground and underground parts by 17.04% and 10.36%, respectively, compared with that under the single Cd pollution, which showed that the combined toxicity effect of the combined pollution on plant growth was enhanced. The inoculation of plant growth-promoting bacteria VY-1 could alleviate the toxicity of Cd-PE combined pollution and increase the length of aboveground and underground parts by 33.83% and 73.21% and the dry weight by 56.64% and 33.44%, respectively. Transcriptome sequencing showed that 904 genes were up-regulated after inoculation with VY-1. Inoculation with growth-promoting bacteria VY-1 could up-regulate the expression of several genes in the auxin, abscisic acid, flavonoid synthesis, and lignin biosynthesis pathways, which promoted the response ability of sorghum under Cd-PE combined pollution stress and improved its resistance. The above results indicated that plant growth-promoting bacteria could alleviate the stress of heavy metal and microplastic combined pollution by regulating plant gene expression, which provided a reference for plant-microbial joint remediation of heavy metal and microplastic combined pollution.


Metals, Heavy , Soil Pollutants , Sorghum , Cadmium/analysis , Microplastics , Plastics , Sorghum/genetics , Sorghum/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Bacteria/genetics , Bacteria/metabolism , Gene Expression Profiling , Soil Pollutants/analysis , Biodegradation, Environmental , Soil
20.
BMC Res Notes ; 17(1): 1, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167203

OBJECTIVES: The objective of this data set was to identify transcriptional networks that control elongation of seedling leaf sheaths in the C4 grass Sorghum bicolor. One motivation was that leaf sheaths are a primary constituent of stems in grass seedlings; therefore, genes that control growth of this organ are important contributors to successful transition from the seedling stage to the mature plant stage and, ultimately, crop success. Since diurnal rhythms contribute to regulation of signaling networks responsible for growth, a time course representing the late afternoon and early evening was anticipated to pinpoint important control genes for stem growth. Ultimately, the expected outcome was discovery of transcript networks that integrate internal and external signals to fine tune leaf sheath growth and, consequently, plant height. DATA DESCRIPTION: The data set is RNAseq profiling of upper leaf sheaths collected from wild type Sorghum bicolor (BTx623 line) plants at four-hour intervals from 12.5 h after dawn to 20 h after dawn. Global transcript levels in leaves were determined by deep sequencing of mRNA from four individual seedlings at each time point. This data set contains sequences representing the spectrum of mRNAs from individual genes. This data set enables detection of significant changes in gene-level expression caused by the progression of the day from late afternoon to the middle of the night. This data set is useful to identify gene expression networks regulating growth in the leaf sheath, an organ that is a major contributor to the sorghum seedling stem and defines seedling height.


Sorghum , Sorghum/genetics , Sorghum/metabolism , Gene Regulatory Networks , Poaceae/genetics , Seedlings/genetics , Plant Leaves/genetics , Plant Leaves/metabolism
...